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Unstructured adaptive grid flow simulation is applied to the calculation of high-
speed compressible flows of inert and reactive gas mixtures. In the present case, the
flowfield is simulated using the 2-D Euler equations, which are discretized in a cell-
centered finite volume procedure on unstructured triangular meshes. Interface fluxes
are calculated by a Liou flux vector splitting scheme which has been adapted to an
unstructured grid context by the authors. Physicochemical properties are functions of
the local mixture composition, temperature, and pressure, which are computed using
the CHEMKIN-II subroutines. Computational results are presented for the case of
premixed hydrogen–air supersonic flow over a 2-D wedge. In such a configuration,
combustion may be triggered behind the oblique shock wave and transition to an
oblique detonation wave is eventually obtained. It is shown that the solution adaptive
procedure implemented is able to correctly define the important wave fronts. A
parametric analysis of the influence of the adaptation parameters on the computed
solution is performed. c© 2000 Academic Press
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1. INTRODUCTION

The use of unstructured grids has received considerable attention in the past few years due
to the desire to treat complex flow topologies [1–3]. As flowfields of interest become more
complex, it is accepted that only triangular grids in 2-D, or tetrahedral grids in 3-D, possess
the degree of flexibility necessary to efficiently discretize the computational domain. In
some cases, even if the geometry of the computational domain is simple, complex flowfield
configurations can arise due to physical phenomena. Combustion, for instance, may lead to
strong heat release together with chemical species transformations in localized regions of
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the flowfield. In the present work an adaptive unstructured grid flow simulation capability
is applied to the calculation of high-speed, compressible flows of inert and reactive gas
mixtures.

A clear advantage of unstructured grids is that they allow more natural and efficient
implementation of solution adaptive refinement procedures, which also are a powerful tool
in the simulation of flows with embedded discontinuities. In particular, for reactive flows,
different time and length scales are present in the solution and these must be accurately
resolved. The characteristic time scale of the slowest chemical reaction may be several orders
of magnitude larger than that of the fastest one. Thus, the slowest reaction determines the
dimensions of the computational domain and the duration of the computation, while the
minimum mesh size required is fixed by the fastest time scale. Moreover, due to the high-
activation-energy chemical kinetics associated with the combustion process, fast chemical
reactions occur only in a small portion of the space. These considerations naturally lead
us to envisage the use of local grid refinement procedures in the present context. Such
procedures must be based on adaption strategies that define (i) which regions of the mesh
are to be refined; (ii) how the mesh enrichment process is to be performed; (iii) how the
information about the new mesh points is to be stored; and (iv) if any post-processing of
the new mesh is needed.

The problem of primary interest in the present case is the supersonic flow of a reactive
mixture of hydrogen and air over a two-dimensional wedge. Inert and reacting gas flows
over this configuration are considered. The onset of combustion downstream of an oblique
shock wave stabilized by a wedge has been studied numerically previously by various
authors [4–6] using structured mesh solvers. These references show that, even though the
geometry of the problem considered is extremely simple, the transition that occurs between
the oblique shock wave stabilized by the wedge and the oblique detonation wave involves
fairly complex flowfield configurations. In particular, these papers show that heat release
due to combustion occurs after an induction length downstream of the leading shock wave.
Then, the onset of combustion is responsible for a change on the flow conditions downstream
of this initial shock, which leads eventually to the formation of an oblique detonation wave.

In the present case, the flowfield is simulated using the 2-D Euler equations, which are
discretized in a cell-centered finite volume procedure on unstructured triangular meshes
[7, 8]. Interface fluxes are calculated by a flux vector splitting procedure which guarantees
monotone behavior throughout the flowfield [9]. Higher-order spatial accuracy is sought by
the use of an extrapolation procedure in which the limited values of the gradients within a
cell are used to reconstruct flow properties at the cell interfaces. The adaptation procedure
which is used to locally refine the computational mesh consists of three steps. First, the
computational cells within which the gradients of some prescribed variables exceed a given
threshold are marked. Then, each of the edges of each cell is halved, so that a marked cell
is divided into four new ones and its neighbors are divided into either two or four new cells.
A smoothing procedure which displaces the cell vertices in order to decrease unwanted cell
size variations is then applied.

Flows with variable chemical composition and finite rate chemistry are considered.
Physicochemical properties are functions of the local mixture composition, temperature, and
pressure, which are computed using the CHEMKIN-II subroutines [10]. A detailed chemi-
cal kinetics mechanism for hydrogen–air combustion (9 species, 18 elementary reactions)
[11] is used in order to accurately describe all the relevant time scales. The performance
of the adaptation procedure is analyzed for both inert and reactive flow computations.
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Comparisons are made between structured and unstructured mesh solver results for the
oblique shock wave/oblique detonation wave transition problem.

2. THEORETICAL FORMULATION

The 2-D Euler equations for a chemically reacting gas mixture can be written in integral
form for a 2-D Cartesian coordinate system [7] as

∂

∂t

∫∫
V

Q dx dy+
∫

S
(E dy− F dx) =

∫∫
V
Ä̇ dx dy. (1)

Here,V represents the area of the control volume andS is its boundary. The vector of con-
served quantitiesQ is given by

Q = [ρ ρu ρv E ρY1 · · · ρYJ−1]T . (2)

The expressions for the convective flux vectors,E andF , are

E =



ρu

ρu2+ p
ρuv

(E + p)u

ρY1u
...

ρYJ−1u


, F =



ρv

ρuv

ρv2+ p

(E + p)v

ρY1v
...

ρYJ−1v


. (3)

The chemical source vector can be written as

Ä̇ = [0 0 0 0 ω̇1W1 · · · ω̇J−1WJ−1]T . (4)

The nomenclature used here is the standard one, such thatρ is the density,u and v
are Cartesian velocity components,p is the static pressure,E is the total energy per unit
of volume, andYj , ω̇ j , andWj are the mass fraction, the molar production rate, and the
molecular weight of speciesj , respectively. The mass fraction of speciesJ is calculated by
YJ = 1−∑J−1

j=1 Yj . Equation (1) must be supplemented by the equations of state

p = ρRT
J∑

j=1

Yj

Wj
,
E
ρ
=

J∑
j=1

Yj ej + 1

2
(u2+ v2), whereej = h0

j +
∫ T

T0

cpj dT − p

ρ
.

(5)

In these equations,T is the static temperature,R is the universal gas constant, andej , h0
j ,

andcpj are the internal energy, the standard-state enthalpy, and the specific heat at constant
pressure per unit mass of speciesj , respectively. The specific heat at constant pressure
and the standard-state enthalpy for each species are functions of the temperature [10]. The
chemical kinetics scheme used involves nine species, H2, O2, H2O, OH, O, H, HO2, H2O2,
and N2, and is due to Balakrishnan and Williams [11]. The use of such a detailed chemical
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mechanism is needed to obtain a correct prediction of the different time and length scales
present in the reactive flowfields of interest, as well as their variation with the flow conditions
[5, 6, 12]. The molar production rateṡω j are given by the Arrhenius law and calculated
using the CHEMKIN-II package [10].

3. SPATIAL DISCRETIZATION ALGORITHMS

3.1. First-Order Upwind Scheme

The upwind spatial discretization algorithm implemented in the present work computes
interface fluxes using the Liou [9] Advection Upwind Splitting Method (AUSM+). The
convective operator,C(Qi ), can be written in the present cell-centered case as

C(Qi ) =
3∑

k=1

(Eik1yik − Fik1xik), (6)

where1xik = xk2 − xk1 and1yik = yk2 − yk1. Figure 1 shows a sketch of a generic triangle
layout, including a definition of edgen1n2 and associated trianglesi andk.

The Liou AUSM+ scheme considers that the convective operator can be expressed as a
sum of the convective and pressure terms [9]. The inviscid flux vectors can be written as

E = u8+ Px = Mxa8+ Px,
(7)

F = v8+ Py = Mya8+ Py,

where the8, Px, andPy vectors are defined as

8 =



ρ

ρu
ρv

ρH

ρY1
...

ρYJ−1


Px =



0
p

0
0
0
...

0


Py =



0
0
p

0
0
...

0


. (8)

In the previous expressions,H is the total specific enthalpy,Mx = u/a, and My= v/a,
wherea is the speed of sound.

FIG. 1. Sketch of the triangle layout.
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The approach followed in the present work in order to extend Liou’s ideas [9] to the
unstructured grid case consists in defining a local one-dimensional coordinate system normal
to the edge considered. The reason for this can be perceived if one observes, based on Eq. (6),
that the contribution of theik edge to the convective operator can be written as [8]

contrib. of ik edge= Eik1yik − Fik1xik

= (Eiknxik + Fiknyik

)
`ik, (9)

where theEnik normal to theik edge, positive outwards with respect to thei th triangle, is
defined as

Enik = nxik ı̂ + nyik ̂ =
1yik

`ik
ı̂ − 1xik

`ik
̂ . (10)

Here,`ik is the length of theik edge. Hence, one can write

contribution ofik edge= (F (c)
ik + Pik

)
`ik, (11)

where, for now, it is sufficient to writeF (c)
ik andPik as

F (c)
ik = (unx8+ vny8)ik,

(12)
Pik = (Pxnx + Pyny)ik = pik



0
nxik

nyik

0
...

0


.

For the construction of the first-order scheme, one must identify the left (orL) state, as
defined in Ref. [9], as the properties of thei th triangle and the right (orR) state as those
of thekth triangle (see Fig. 1). Hence, the convective operator, as defined in Eq. (6), can
finally be written as

C(Qi ) =
3∑

k=1

[(
F (c)

ik + Pik
)
`ik
]
, (13)

where

F (c)
ik =

1

2
Mikaik(8L +8R)− 1

2
|Mik |aik(8R−8L), (14)

andPik has already been defined in Eq. (12). The interface Mach numberMik and pressure
pik are defined according to the AUSM+ [9] scheme. Further details of the algorithm
implementation can be found in Ref. [8] for the ideal gas case. The second-order scheme
follows exactly the same formulation, except that the left and right states are obtained by
extrapolation of primitive variables as described in the following section.



GRID FLOW SIMULATIONS OF GAS MIXTURES 527

3.2. Higher-Order Accuracy

Second-order spatial accuracy is sought in the present case using MUSCL extrapolation
[13] of primitive variables(p, u, v, T,Yj ). Such an extrapolation is performed by computing
the gradients of the primitive variables within the cell using Green’s theorem. The control
volume for this integration is chosen to be the computational cell itself. Then, the values of
the primitive variables at the cell interfaces are obtained by linear extrapolation from the
cell centroids. For the 2-D advection model problem such a procedure is found [14] to be
at least as accurate as the one proposed by Barth and Jespersen [15].

In order to avoid oscillations, the extrapolated states must be limited. In the present case,
a multidimensional limiter [15] is adopted for all the computations present here. Further
details of the limiter construction formulation can be seen in Ref. [14]. However, for some
of the different flowfields that have been computed [8], the convergence of the solution,
measured in terms of both theL∞ and theL2 norms of the residue, seems to stop after
two to four orders of magnitude decay. A limiter freezing procedure [16] is implemented
in a perfect gas version of this code that led to machine zero convergence on evaluations
performed in inert cases. For the reactive cases, one can only reduce the residue by two to
three orders of magnitude regardless of the limiter used [7]. A still open question is whether
a limiter freezing procedure could improve the convergence of the reactive computations
or whether physical reasons prevent achieving machine zero convergence in those cases. It
must be emphasized that the inert and reactive flowfields presented here are not subject to
further evolution, and they are thus converged in a macroscopic sense.

4. TIME DISCRETIZATION METHODS

The Euler equations, fully discretized in space by an upwind method and assuming a
stationary mesh, can be written as

d Qi

dt
= − 1

Vi
C(Qi )+ Ä̇(Qi ). (15)

Time advancement of the solution from time stepn to n + 1 is achieved by the use of
Strang’s time-step splitting procedure [17]

Qn+1
i = L(1t/2)C(1t)L(1t/2)Qn

i , (16)

which separately integrates the fluid dynamics operatorL and the chemistry operatorC
at each cell. This procedure is second-order accurate and gives the flexibility of choosing
specialized integrators for the chemical kinetics and the fluid dynamics. A more detailed
discussion on this subject can be found in the work of LeVeque and Yee [18].

The present work uses a fully explicit, second-order accurate, five-stage Runge–Kutta
time-stepping scheme [2] to advance the fluid dynamics part of the governing equations in
time. The time integration scheme can therefore be written as

Q(0)
i = Qn

i ,

Q(`)
i = Q(0)

i − α`
1ti
Vi

C
(
Q(`−1)

i

)
` = 1, 2, . . . ,5, (17)

Qn+1
i = Q(5)

i ,
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where the superscriptsn andn+ 1 indicate that these are property values at the beginning
and at the end of thenth time step, and the particular values of theα coefficients used are
those suggested by Mavriplis [2]. For steady state, inert gas problems, a local time-stepping
option has been implemented in order to accelerate convergence [7]. In the reactive flow
case, one cannot use a space-varying time step. However, some convergence acceleration
can be achieved by recalculating a global time step at each iteration as the minimum of the
local1ti ’s obtained from the CFL condition.

The use of a time-step splitting procedure allows the adoption of a specialized solver
for the integration of the chemistry operatorC in Eq. (16). This corresponds to a separate
integration of the ODE

d Qi

dt
= Ä̇(Qi ). (18)

It can be noticed from Eqs. (18) and (1)–(4) that such a time-step splitting procedure results
in a constant volume thermal explosion problem in each computational cell. The authors
have chosen to perform the integration of Eq. (18) using VODE [19], which is an ODE
solver tailored for the solution of problems which include stiff source terms. VODE uses
a variable time-step, variable order, backward differentiation algorithm, together with a
modified Newton method whose Jacobian matrix is evaluated numerically. This last feature
is of particular value when different chemical kinetics schemes are used. A further advantage
of using this stiff ODE solver is the fact that it has no stability limits on the choice of the
time step. Therefore, only the fluid dynamics requirements constrain the choice of1t .

5. ADAPTIVE REFINEMENT

The concept behind using an adaptive mesh strategy is to refine regions where large gra-
dients occur. For many problems, the regions that need to be refined are small compared to
the size of the computational domain. Therefore, one can reduce storage and CPU require-
ments by the use of adaptive refinement, when compared with a fixed fine mesh. In order
to identify the regions that require grid refinement, a sensor must be defined. The sensor
used in this work is based on gradients of flow properties. Its general definition could be
expressed as

(sensor)i = max
m

(
|∇ζm|i∣∣ζmmax − ζmmin

∣∣
)
; ζm = (p, u, v, T,Yj ), (19)

whereζmmax andζmmin are the maximum and the minimum values on the whole flowfield and
|∇ζm|i is the magnitude of the gradient of theζm property in thei th control volume. As will
be seen below, the use of more than one variable to define the sensor is essential to obtain
good shock and detonation wave resolution.

5.1. Mesh Enrichment

The first step of the adaptive procedure is to compute the flow on an existing coarse
mesh. With this preliminary solution, one can calculate the sensor as previously described.
The code marks all triangles in which the sensor exceeds some specified threshold value
(the threshold value will be denoted asι in the present paper), and the marked triangles are
refined. A new finer mesh is then constructed by enrichment of the original coarse grid.
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FIG. 2. Schematic representation of (a) the three possible triangle subdivision processes and (b) a single mesh
smoothing pass.

The mesh enrichment procedure consists of introducing an additional node for each side
of a triangle marked for refinement. For interior sides, this additional node is placed at the
mid-point of the side whereas, for boundary sides, it is necessary to refer to the boundary
definition to ensure that the new node is placed on the true boundary. After this initial pass,
the code has to search all triangles to identify cells that have two or three divided sides.
Each of these cells is subdivided into four new triangles. This subdivision may eventually
mark new faces. Therefore, this process has to be performed until there are no triangles
with more than one marked face. In order to avoid hanging nodes, the triangles that had
one marked face should be divided by halving. Figure 2a illustrates the three possible ways
of subdividing triangles. In the current implementation of the mesh enrichment procedure,
history information about the subdivision process is not stored; i.e., the father triangle
identity is given to one of the children. Although this procedure minimizes storage space,
it lacks the flexibility which would be desirable in order to introduce mesh coarsening
strategies [20]. This feature is certainly a setback if one is to study propagative or unsteady
phenomena, which is not the case here, and the issue of mesh coarsening will be addressed
in the future.

5.2. Successive Triangle Halvings

The second part of the refinement process consists of identifying all triangles which were
refined by halving. This information is stored for the next refinement step because, if there is
again an attempt to subdivide these triangles by halving, this is not allowed. The experience
has shown [21] that repeated triangle division by halving has a strong detrimental effect
in mesh quality. Therefore, if the next refinement step tries to divide by halving a triangle
which was obtained by a previous division by halving, the logic in the code forces the
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original triangle to be divided into four new triangles before the refinement procedure is
allowed to continue. When the mesh enrichment procedure has been completed, the new
control volumes receive the property values of their father triangles and the flow solver is
re-started.

5.3. Mesh Smoothing

After the mesh enrichment process is achieved, one or more mesh smoothing passes
may be performed. The goal of the smoothing process is to smooth out abrupt variations
of cell size which, as will be shown below, may occur after several enrichment passes. The
smoothing procedure adopted here considers all the triangles that share a common vertex.
This vertex is then displaced to the centroid of the polygon formed by the triangles. The unit
process is schematically represented in Fig. 2b. It is clear that the mesh connectivity remains
unchanged when smoothing is performed. Applying a very large number of smoothing
passes would destroy the benefits of the enrichment process. Therefore, an optimum number
of smoothing passes exist that preserve the desired decrease of cell size at selected regions
of the computational domain, yet allow for a gradual transition from the smallest to the
largest meshes. This optimum number of passes is found to be on the order of 5 to 10. It
should be noticed that nodes lying at the boundary of the computational domain are not
displaced by the smoothing process.

6. RESULTS AND DISCUSSION

6.1. Flowfield Configuration and Initial and Boundary Conditions

The computational procedure described above is applied to the prediction of the super-
sonic flow of a hydrogen–air mixture around a two-dimensional wedge. The geometry of
the computational domain is shown in Fig. 3. The outer boundaries of the domain are either
parallel or perpendicular to the wedge surface. The mixture enters the domain from the left
and upper boundaries with a given Mach numberM , pressurep, temperatureT , equiva-
lence ratio and angle of attackδ. The angle of attack is equal to the negative of the wedge
half-angle. These conditions are held fixed during the computations presented here. Further-
more, these same values specified as boundary conditions for the left and upper boundaries
are used as initial conditions in the whole field to start the calculations. At the wedge sur-
face zero normal temperature gradient (∂T/∂y= 0) and non-catalytic (∂Yj /∂y= 0) and slip

FIG. 3. Schematic representation of the computational domain.
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FIG. 4. Initial mesh and temperature (K) field obtained after convergence.

boundary conditions (∂u/∂y= v= 0) are imposed. At the right (outflow) boundary of the
computational domain, characteristic boundary conditions are used [22].

All the computations presented here were performed for the flow of anM = 8,T = 300 K,
p= 85 kPa stoichiometric hydrogen–air mixture around a wedge with a half-angle of 23.8◦.
The initial mesh used contains 1504 triangles and 816 nodes, as shown in Fig. 4. The
computational domain spans over(x, y)= (0 : 12, 0 : 4) cm.

Such flow and boundary conditions, which lead to stable oblique shock waves for inert
gases, may give rise to a complex flow topology in the presence of combustion. As will be
seen in the forthcoming sections, when ignition of the reactive mixture occurs downstream of
the leading oblique shock wave, an oblique shock wave/oblique detonation wave transition
is observed.

6.2. Inert Flow

Before we present the results in which chemistry is taken into account, it is useful to
examine the calculations performed for an inert gas flow. The results in Fig. 4, where the
initial mesh and the temperature contours obtained after convergence are plotted, show that
the shock wave is resolved within three computational cells. Due to the coarseness of this
mesh, the actual thickness of the oblique shock wave is comparable to the dimensions of
the computational domain. In order to obtain a smaller ratio of shock thickness to domain
dimension, three passes of adaptive refinement are performed. In this case, a sensor based
on the gradients of the primitive variables(p, u, v, T) is used. The value of the threshold
is ι= (0.1, 0.1, 0.05) for each refinement pass. Convergence of the result on each mesh is
achieved before mesh refinement. The final refined mesh contains 7630 triangles and 3908
nodes. Figure 5 shows the mesh and the temperature field for the converged solution in the
final refined mesh. In this case, smoothing of the mesh after each mesh enrichment pass is
not active. It can be seen in Fig. 5 that mesh refinement leads to a dramatic reduction of
the thickness of the numerical shock wave. It should be noticed, though, that the number of
computational cells across the shock remains unchanged when the mesh is refined.

Figure 6 shows the final adapted mesh and the temperature contours when three mesh
enrichment passes are performed, after each of which 10 smoothing passes were made. All

FIG. 5. Adapted mesh and the corresponding temperature (K) contours with no mesh smoothing, adaptation
on (p, u, v, T), ι= (0.1, 0.1, 0.05).
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FIG. 6. Adapted mesh and the corresponding temperature (K) contours with 10 smoothing passes after each
mesh enrichment pass, adaptation on(p, u, v, T), ι= (0.1, 0.1, 0.05).

the other flow and solver parameters used are the same as above. The numbers of nodes and
volumes in this resulting mesh are 3969 and 7748, respectively. Even though the quality of
the solution is not affected by the smoothing procedure, the spatial distribution of cell sizes
varies more gradually, when compared to the results shown in Fig. 5. A distinctive feature
of this smoothed mesh is the secondary mesh clustering that occurs by spots. As shown in
Fig. 7, those spots are found to lie near the boundary of a mesh enriched region. Indeed,
the nodes in these regions have more connections toward one preferential direction. Thus,
the mesh smoothing procedure displaces a given node toward this direction, leading to the
observed clustering.

The history of theL2 norm of the residual, corresponding to the results in Figs. 5 and 6,
is shown in Fig. 8. A sudden increase of these norms is observed each time the mesh is
adapted. Then, the residuals gradually decrease, eventually reaching a constant value. A
frozen limiter procedure [16], not implemented in this version of the computer code, leads to
machine zero convergence for ideal gas calculations under similar flow conditions. It should
be noticed that the convergence process is stalled sooner when the mesh is not smoothed.
This is found to be a direct consequence of the secondary clustering of mesh points: a
reduction in the minimum cell size is observed when smoothing is performed. Indeed, the
ratio of minimum characteristic mesh sizes (defined by the radius of the inscribed circle)
for the non-smoothed and the smoothed meshes is 2.9 : 1. In the present constant time-step
computations, the benefits of mesh smoothing seem to be counterbalanced by this minimum
cell size decrease. This is not the case when the variable time-step option is used.

6.3. Reacting Flow

The supersonic flow of a reactive mixture over 2-D wedges has been studied both nu-
merically [4–6, 12] and experimentally [5, 23, 24] in the past few years. In these cases,
delayed transitions from oblique shock waves (OSW) to oblique detonation waves (ODW)
were obtained which involve strong couplings between compressibility and high activation

FIG. 7. Adapted mesh corresponding to (a) no smoothing and (b) 10 smoothing passes after each mesh
enrichment pass; enlarged view of Figs. 5 and 6.
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FIG. 8. Logarithm of theL2 norm of the residual, inert flows.

energy, exothermic, chemical kinetics. A typical example of such a transition is shown in
Fig. 9, in which the fields of H2O and OH mass fraction, pressure and temperature are
plotted for the same flow and geometrical conditions used for the inert computations. These
results are obtained using a second-order, upwind structured mesh solver based on the same
flux splitting method [5, 6, 12] on a uniform Cartesian grid containing 200× 120 points.
The results presented in Fig. 9 are considered a baseline calculation for comparison with
the unstructured mesh computations, since the mesh spacing is of the order of the minimum
cell size obtained after two refinement passes, starting from the mesh shown in Fig. 4.

The computational results presented in Fig. 9 show that, when wedge-stabilized OSW/
ODW transition occurs, the resulting flowfield may be divided into three regions [4–6, 12]:

1. An induction region, where an OSW whose angle is identical to the one obtained
in the inert case exists. The thermodynamic conditions prevailing in this region are fixed by
the jump conditions across the leading OSW. Chain initiation and chain branching reactions
dominate the chemical process, with negligible heat release.

2. A transition region, where the sudden onset of chain termination reactions leads to
an increase of the flow temperature at the vicinity of the wedge surface. Pressure waves,
which are fed by this temperature increase, propagate towards the leading OSW, modifying
the flow conditions downstream of this shock wave. A decrease of the chemical induction
time results, which, associated with the coalescence of pressure waves, is responsible for the

FIG. 9. Fields of temperature (K), pressure (atm), and OH and H2O mass fractions for a baseline structured
mesh computation.
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formation of a detonation wave in the shocked gas region. This detonation wave intercepts
the initial OSW in a triple point from which a slip line and an expansion fan emanate.

3. A detonation region, where the initial ODW that was formed in the transition region
relaxes towards the strong overdriven detonation corresponding to this given wedge angle
and flow conditions. Such a relaxation is due to the interaction between the ODW and the
wedge-reflected expansion fan. The slip line that originates at the triple point separates
gases that have crossed the final ODW only from the burned mixture that crossed both the
leading OSW and the transition region.

In this context, one of the major motivations for the work described here is to implement
an adaptive refinement capability which would allow further focusing on the regions of
interest without an excessive increase in the computational cost. This adaptive refinement
capability, embedded in the overall unstructured grid approach, should allow the creation
of new control volumes only in relevant portions of the flow and, therefore, a higher level of
refinement and understanding of the physical phenomena in the transition and detonation
regions. The present paper, however, does not attempt to exploit yet the capability in order
to improve the understanding of the physical process, but is mostly concerned with the
validation and test of the proposed unstructured grid capability for high speed combustion
applications.

The adaptive refinement procedure described in the previous sections is influenced by:
(i) the choice of the variables which will be used to define the sensor; (ii) whether smoothing
is allowed or not; (iii) the thresholdι. Moreover, the number of refinement passes is a
crucial parameter, since the accuracy of the computed results depends on the mesh size.
The influence of these parameters on the computed solution is examined now.

6.3.1. Influence of the Choice of the Sensor Variables

Depending on the choice of the variables used as sensors in Eq. (19), the mesh enrichment
procedure halves the triangle edges in different regions of the flowfield. In Figs. 10–12 the
final adapted mesh, the pressure, the temperature, and the OH mass fraction are plotted when
(p, u, v, T), (p, u, v, T,Yj ), and (ρ, ρu, ρv, E, ρYj ) are used as sensors, respectively.
Three adaptive refinement passes are made, withι= (0.2, 0.1, 0.05), each followed by 10
smoothing passes. The final numbers of volumes and nodes are (7,154 and 3,665), (9,834
and 5,019), and (10,475 and 5,346), respectively.

FIG. 10. Final adapted mesh, temperature (K), pressure (atm), and OH mass fraction field for adaptation on
(p, u, v, T), ι= (0.2, 0.1, 0.05), with mesh smoothing.
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FIG. 11. Final adapted mesh, temperature (K), pressure (atm), and OH mass fraction field for adaptation on
(p, u, v, T,Yj ), ι= (0.2, 0.1, 0.05), with mesh smoothing.

The comparison of these figures shows that the overall features of the flowfield, i.e., the
induction length, the transition region, and the ODW angle, are in good agreement with the
results of the baseline structured code shown in Fig. 9. On the other hand, the result obtained
when the sensor variables are(p, u, v, T) has a lack of mesh resolution in the transition
region. The transition region is found to be correctly resolved both when the primitive
(p, u, v, T,Yj ) and when the conserved(ρ, ρu, ρv, E, ρYj ) variables are used, the former
leading to a smaller number of nodes and volumes. The use of the mass fractionsYj only
as sensors was not attempted, since this would lead to a coarse mesh for the leading OSW,
which is clearly an undesirable feature. These results clearly show that adaption based on
the mass fractionsYj is essential to the rendering of the OSW/ODW transition. This is due
to the fact that, within the transition region, the chemical process involvesO(1) changes in
the mass fractions with only moderate variations inp, u, v, T .

It can also be seen in Figs. 10–12 that the enrichment process does not refine the mesh
around the slip line which emanates from the triple point. Indeed, as it is shown below, a
smaller value of theι parameter is needed, since the gradients there are much smaller than
those across both the OSW and the ODW.

6.3.2. Influence of the Mesh Smoothing

In Fig. 13, the final adapted mesh, the temperature and OH mass fraction fields obtained
using the primitive variables(p, u, v, T,Yj ) as sensors andι= (0.2, 0.1, 0.05) are plotted.

FIG. 12. Final adapted mesh, temperature (K), pressure (atm), and OH mass fraction field for adaptation on
(ρ, ρu, ρv, E, ρYj ), ι= (0.2, 0.1, 0.05), with mesh smoothing.
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FIG. 13. Final adapted mesh, temperature (K), pressure (atm), and OH mass fraction field for adaptation on
(p, u, v, T,Yj ), ι= (0.2, 0.1, 0.05), no mesh smoothing.

No smoothing passes are performed. The final mesh contains 11,168 triangles and 5692
nodes. The results shown in this figure were obtained using exactly the same flow and
solver parameters except for the smoothing passes, as those presented in Fig. 11. Thus,
when smoothing is not performed, the final mesh is found to have 15% more nodes. This
tendency, although contradictory to the one observed for the inert cases, has been observed
in all the reactive flow computations that have been performed by the authors. These figures
show good agreement between the results computed with and without smoothing. The
benefits of smoothing on the quality of the solution are only evidenced at the end of the
transition region and the vicinity of the wall [(x, y) = (7, 0)], where the contour plots are
slightly jagged for the unsmoothed case.

As already noticed in the inert computations, smoothing of the mesh leads to a decrease
in the minimum triangle size, which in the present case is 0.56 mm without smoothing and
0.30 mm for the final smoothed mesh. The corresponding time steps are also on the same
0.54 ratio. Thus, as can be verified in theL2 residual plots of Fig. 14, the convergence of the
non-smoothed mesh is almost two times faster than that of the smoothed mesh. Therefore,
the forthcoming comparisons do not include smoothing of the computational mesh.

Convergence of the reactive flow simulations also seems to stall after a few orders of
magnitude decay in the residue, regardless of whether mesh smoothing is used or not. As
discussed in Section 6.2, the use of limiter freezing procedures may lead to machine zero
convergence. Furthermore, previous experience with the structured mesh calculations [6, 12]

FIG. 14. Logarithm of theL2 norm of the residual, reactive flows.
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FIG. 15. Final adapted mesh, temperature (K), pressure (atm), and OH mass fraction field for adaptation on
(p, u, v, T,Yj ), ι= (0.1, 0.1, 0.05), no mesh smoothing.

has presented similar behavior as far as the convergence of the residual for reactive flow
simulations is concerned. It must be noticed, though, that as meshes become increasingly
fine, the detailed reactive flow result should capture the inner structure of detonation waves,
which include unsteady transverse and longitudinal waves. The onset of these waves could
be responsible for theL2 norm of the residual not reaching machine zero.

6.3.3. Influence of the Thresholdι

In order to evidence the influence of the thresholdι, Figs. 15 and 16 present the results
of the computations performed when the value of the threshold is halved either at the first
or at the last adaption [ι= (0.1, 0.1, 0.05), (0.2, 0.1, 0.025)], respectively. All the other
flow and mesh adaption parameters are the same as those of Fig. 13. The final numbers
of volumes and nodes are (11,524 and 5,872) and (12,062 and 6,144), respectively. As
expected, decreasing the value of the threshold increases the number of added nodes. Both
cases show an improvement in the number of volumes at the burned gases region, leading
to a better mesh resolution around the slip line.

A detailed comparison of the final adapted mesh plotted in Figs. 13, 15, and 16 shows that
the spatial extent of the triangles added by the adaption process is larger when the threshold
ι is reduced at early stages of the computation. Thus, decreasing the value of the threshold
at the later stages of the adaption procedure is a more effective way of distributing the mesh
points. This is due to the fact that the new volumes are smaller than those added during the

FIG. 16. Final adapted mesh, temperature (K), pressure (atm), and OH mass fraction field for adaptation on
(p, u, v, T,Yj ), ι= (0.2, 0.1, 0.025), no mesh smoothing.
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FIG. 17. Final adapted mesh and pressure fields (atm) after three (a and c) and four (b and d) adaptation
passes, adaptation on(p, u, v, T,Yj ), ι = (0.2, 0.1, 0.025, 0.01), no mesh smoothing.

initial stages of adaption and thus have a greater contribution to the spatial resolution of the
physical phenomena. This is of particular interest in the present OSW/ODW computation,
where the spatial extent of the shock waves is decreased with successive refinements.

6.3.4. Influence of the Number of Adaption Passes

Departing from the results shown in Fig. 16, a fourth adaptation pass is performed using
ι= 0.01. The final mesh contains 37,168 triangles and 18,744 volumes. This supplementary
mesh adaption pass is unnecessary, as far as the overall flow structure is concerned. However,
some of the details of the computed solution are subject to change. For instance, this can be
verified in Fig. 17, where enlargements of the mesh and the pressure field in the transition
region are plotted. These results are obtained once steady state is achieved after three and
four adaption passes. This is further illustrated in Fig. 18, where the evolution of temperature,
pressure, and mass fractions of OH and H across the oblique detonation wave is plotted.
This figure shows that the finer mesh brings no change either in the final values of these
variables or in the peak values ofT andYOH. On the other hand, the peak value of H mass
fraction andp increase nearly 13 and 6%, respectively. A similar trend is also observed

FIG. 18. Temperature (K), pressure (atm), and OH and H mass fraction evolution as a function of the distance
normal to the ODW. Starting point(x, y)= (11.02, 2.17); results after (- - -) three and (—) four mesh adaptation
passes.
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for HO2 and H2O2 radicals. An expected effect of the finer mesh is the observed sharper
shock capture. It should be noticed that the characteristic cell size corresponding to the
finest mesh, which is on the order of 0.3 mm, is still too large to capture details of the inner
structure of the detonation wave. Further refinement is not deemed practical at this point,
since the CPU time to convergence on this last mesh is on the order of 20 days on a HP
PA-7200 120-MHz processor. Three approaches to reducing this prohibitive execution time
should be envisaged: (i) processor architecture oriented optimization, such as improving
data locality on the cache; (ii) mesh coarsening, with the additional benefit of decreasing
storage requirements; and (iii) code parallelization.

7. CONCLUDING REMARKS

Computational results were presented for the case of premixed hydrogen–air flow over
a 2-D wedge. In this case, combustion may be triggered behind the oblique shock wave
and transition to an oblique detonation wave is eventually obtained. Attention was focused
on sharp resolution of both the shock and detonation waves. Comparisons were made with
independent calculations and good agreement was observed for the range of parameters
investigated. Although the use of unstructured adaptive meshes is commonplace in aero-
dynamic applications today, the same is not true for combustion in supersonic flows. The
unstructured adaptive solution procedure implemented was able to correctly define the im-
portant wave fronts while still offering a computationally efficient option for complex flow
topologies. Moreover, the results also verify that the capability of using solution adaptive
meshes has provided a far better resolution of such waves than previous calculations by
Azevedo and Figueira da Silva [7]. Mesh adaption based on fluid and chemistry variables
was found to be essential to the correct prediction of OSW/ODW transitions. From a phys-
ical point of view, however, additional mesh adaption passes would be desirable to achieve
a detonation wave which is resolved to the smallest spatial scales. This will be the subject
of future work together with improved mesh smoothing after refinement.

ACKNOWLEDGMENTS

This work was accomplished in the framework of an international cooperation agreement between Conselho
Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico (CNPq) and Centre National de la Recherche Scientifique
(CNRS). The authors gratefully acknowledge the additional partial support of CNPq through a doctoral scholarship
for the third author (Process 141156/94-5) and under Integrated Project Research Grant 522413/96-0. Financial
support from the Casimiro Montenegro Filho Foundation during the first author’s sojourn at ITA is also gratefully
acknowledged.

REFERENCES

1. A. Jameson and D. Mavriplis, Finite volume solution of the two-dimensional Euler equations on a regular
triangular mesh,AIAA J.24(4), 611 (1986).

2. D. J. Mavriplis, Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes,
AIAA J.26(7), 824 (1988).

3. V. Venkatakrishnan, Perspective on unstructured grid flow solvers,AIAA J.34(3), 533 (1996).

4. C. Li, K. Kailasanath, and E. Oran, Detonation structures behind oblique shocks,Phys. Fluids6(4), 1600
(1994).



540 FIGUEIRA DA SILVA, AZEVEDO, AND KORZENOWSKI

5. C. Viguier, L. F. Figueira da Silva, D. Desbordes, and B. Deshaies, Onset of oblique detonation over a
wedge: Comparison between experimental and numerical results, inTwenty-Sixth Symposium (International)
on Combustion(The Combustion Institute, Pittsburgh, 1996), p. 3023.

6. B. Deshaies, L. F. Figueira da Silva, and M. Ren´e-Corail, Some generic problems related to combustion of
hydrogen and air in supersonic flows, inIUTAM Symposium on Combustion in Supersonic Flows, edited by
M. Champion and B. Deshaies (Kluwer, Dordrecht/Norwell, MA, 1997), pp. 15–42.

7. J. L. F. Azevedo and L. F. Figueira da Silva, The development of an unstructured grid solver for reactive
compressible flow applications, in33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
American Institute of Aeronautics and Astronautics, Seattle, WA, July 1997 (unpublished).

8. J. L. F. Azevedo and H. Korzenowski, Comparison of unstructured grid finite volume methods for cold
gas hypersonic flow simulations, in16th AIAA Applied Aerodynamics Conference, American Institute of
Aeronautics and Astronautics, Albuquerque, NM, June 1998, pp. 447–463.

9. M.-S. Liou, A sequel to AUSM: AUSM+,J. Comput. Phys.129, 364 (1996).

10. R. J. Kee, F. M. Rupley, and J. A. Miller, CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis
of Gas Phase Chemical Kinetics, SAND89-8009B/UC-706, Sandia National Laboratories, Nov. 1991.

11. G. Balakrishnan and F. A. Williams, Turbulent combustion regimes for hypersonic propulsion employing
hydrogen–air diffusion flamesJ. Propuls. Power10(3), 434 (1994).

12. L. F. Figueira da Silva, and B. Deshaies, Stabilization of an oblique detonation wave by a wedge: A parametric
numerical study,Combust. Flame121(1–2), 152 (2000).

13. B. van Leer, Flux-Vector Splitting for the Euler Equations, inProc. of the 8th International Conference on
Numerical Methods in Fluid Dynamics, edited by E. Krause, Lect. Notes in Phys. (Springer–Verlag, Berlin,
1982), Vol. 170, pp. 507–512.

14. J. L. F. Azevedo, L. F. Figueira da Silva, and D. Strauss, Order of accuracy analysis for unstructured grid finite
volume upwind schemes, submitted for publication.

15. T. J. Barth and D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, in
27th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Reno, NV, Jan.
1989 (unpublished).

16. V. Venkatakrishnan, Convergence to steady state solutions of the Euler equations on unstructured grids with
limitiers, J. Comput. Phys.118, 120 (1995).

17. G. Strang, On the construction and comparison of difference schemes,SIAM J. Numer. Anal.5, 506 (1968).

18. R. J. LeVeque and H. C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source
terms,J. Comput. Phys.86(1), 187 (1990).

19. G. D. Byrne and A. M. Dean, The numerical solution of some kinetics models with VODE and CHEMKIN II,
Comput. Chem.17(3), 297 (1993).

20. A. Povitsky and D. Ofengeim,Numerical Study of Interaction of a Vortical Density Inhomogeneity with
Shock and Expansion Waves, NASA/CR-1998-206918, National Aeronautics and Space Administration; also
ICASE Report No. 98-10, Institute for Computer Applications in Science and Engineering, Feb. 1998.

21. H. Korzenowski,Unstructured Mesh Techniques for the Simulation of High Mach Number Flows(in Por-
tuguese), Ph.D. thesis, Instituto Tecnol´ogico de Aeron´autica, S˜ao Jos´e dos Campos, June 1998.

22. K. W. Thompson, Time dependent boundary conditions for hyperbolic systems,J. Comput. Phys.68, 1 (1987).

23. E. K. Dabora, D. Desbordes, C. Guerraud, and H. G. Wagner, Oblique detonation at hypersonic velocities,
in Dynamics of Detonations and Explosions: Detonations, edited by A. L. Kuhl, A. A. Borisov, J.-C. Leyer,
and W. A. Sirignano, Progress in Astronautics and Aeronautics (American Institute of Aeronautics and
Astronautics, Washington, D.C., 1991), Vol. 133, p. 187.

24. J. C. Liu, J. J. Liou, M. Sichel, C. W. Kaufmann, and J. A. Nichols, Diffraction and transmission of a detonation
into a bounding explosive layer inTwenty-Sixth Symposium (International) on Combustion(The Combustion
Institute, Pittsburgh, 1987), p. 1639.


	1. INTRODUCTION
	2. THEORETICAL FORMULATION
	3. SPATIAL DISCRETIZATION ALGORITHMS
	FIG. 1.

	4. TIME DISCRETIZATION METHODS
	5. ADAPTIVE REFINEMENT
	FIG. 2.

	6. RESULTS AND DISCUSSION
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.

	7. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

